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Coherent backscattering is a coherence effect in the propagation of waves through disordered media involving

two or more scattering events. Here we report on the observation of coherent backscattering from individual

atoms and their mirror images. This system displays two important advantages: First, the effect can be observed

at low optical densities, which allows us to work in very dilute clouds or far from resonance. Second, due to the

fact that the radiation of an atom interferes constructively with that of its own image, the phenomenon is much

more robust to dephasing induced by strong saturation. In particular, the contribution of inelastically scattered

photons to the interference process is demonstrated.

DOI: 10.1103/PhysRevA.94.053806

I. INTRODUCTION

Light propagating in an optically thick sample is subject

to multiple scattering. Although part of the propagation can

be described by a diffusion equation neglecting interferences,

wave effects can alter the distribution of scattered light. In

particular, disorder in the sample may lead to an enhanced

scattering into the backward direction. The effect is known as

coherent backscattering (CBS) in mesoscopic physics, and has

been studied extensively with classical scatterers [1–7]. The

advent of laser-cooling techniques allowed us to manipulate

and control atomic gases, thus enabling their use as resonant

and quantum scatterers. This triggered the study of coherent

multiple scattering in a regime where the quantum internal

structure, the wave-particle duality, and quantum statistical

aspects play a role [8–12].

CBS is understood as resulting from the constructive

interference between a scattering path involving two or

more scatterers and the reciprocal (time-reversed) path (see

Ref. [13], and paths (i) and (ii) in Fig. 1). The interference

of reciprocal paths is actually robust when summed up over

a large disordered sample, which was one of the surprising

features in the first observation of CBS in the 1980s [1–3].

More specifically, some paths add up incoherently and result

in a background radiation, whereas reciprocal paths lead to

an enhanced intensity in the backward direction. However, the

quantum nature of the atoms leads to deviations in the behavior

of CBS as compared to classical scatterers. For example,

the presence of a Zeeman structure can break the symmetry

between the two reverse paths and reduces the contrast between

the enhanced peak of radiation and the background [8,14]. The

time-reversal symmetry of the reciprocal multiple scattering

paths is also broken in the strong driving regime, as a which-

path information becomes available through the inelastically

scattered photons [9,12,15]. Such saturation-induced loss of

coherence in CBS was reported with a cold strontium gas
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[11] and a cold rubidium gas [12,15]. Unfortunately, the

theoretical treatment of saturation in multiple scattering is

very challenging [13,16–23] and has not been solved in full

generality.

Interestingly in a different geometrical configuration coher-

ence effects on the backscattered light can also be observed in

optically thin samples, where multiple scattering is too weak

to produce observable signatures. Indeed the introduction

of a reflective interface—a dielectric mirror for example—

allows for the radiation of the image scatterer to interfere

constructively with that of the original scatterer, eventually

resulting in a coherent backscattering process [24]. This single

scattering regime here involves four processes for each atom

(depicted in Fig. 1), accounting for the real atom and its mirror

image, as well as the laser and its image. Let us call k0 the

incident wave vector, k the scattered wave vector, and ẑ the

normal to the mirror. For a single atom, all four processes

sum up coherently, and the resulting scattered light pattern

presents full interference contrast. When the radiation of all

atoms is disorder averaged, though, all interference fringes

disappear, except at wave vectors k such that k0 · ẑ = − k · ẑ,

because at these specific directions processes (i) and (ii) have

the same optical path for all atoms in the cloud. The resulting

interference fringes present a circular symmetry around the

mirror’s normal direction, with a number of maxima depending

on the spatial extension of the atomic cloud. This effect, which

will henceforth be referred to as mirror-assisted coherent

backscattering (m-CBS), has been observed for classical

scattering media [25].

In this work we report on the experimental observation of m-

CBS from a laser-cooled gas of strontium atoms in the presence

of a dielectric mirror. A series of circular fringes predicted

by the theory are experimentally observed and quantitatively

analyzed. The period and envelope of the interference fringes

allow us, respectively, to precisely determine the position and

longitudinal size of the atomic cloud. We show that in the

strong field regime, where the atoms are fully saturated, the

comparison between theory and experimental results allows

us to show that, in contrast to CBS, inelastic photons fully

contribute to m-CBS.
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FIG. 1. Four processes contributing to m-CBS. In the low

intensity limit, reciprocal paths (i) and (ii) contribute to the m-CBS

fringes, whereas paths (iii) and (iv) yield a smooth background

intensity.

II. EXPERIMENTAL SETUP

We prepare our atomic sample in a typical strontium

apparatus, which we briefly describe in the following. A

collimated atomic beam emerges from an array of microtubes

located at the output of an oven heated to 550 ◦C. The atomic

beam is then decelerated in a 28-cm-long Zeeman slower in

spin-flip configuration by a counterpropagating laser beam of

power ∼40 mW tuned 500 MHz to the red of the 461 nm

resonance. The Zeeman slower beam has a 1/ e2 radius of

4 mm at the entrance of the experimental apparatus, being

focused onto the oven output after propagation through the

whole system (about 90 cm long). The cooled strontium beam

is captured in the science chamber by a magneto-optical

trap (MOT) generated by three pairs of counterpropagating

collimated 461 nm laser beams and a quadrupole magnetic

field; the latter is produced by a pair of coils in anti-Helmholtz

configuration (axial magnetic gradient |∇B | = 70 G/ cm).

Each laser beam has a 1/ e2 radius of 5 mm and is detuned

by − 40 MHz from resonance. A repumping laser addressing

the 497 nm 3
P2 →

3
D2 transition is used to recycle atoms that

have decayed to the metastable state 3P2. In this way we are able

to generate cold gases with ∼108 88Sr atoms at a temperature

below 10 mK after a 2s loading time. Resonant absorption

imaging reveals an approximate Gaussian density profile with

a 1/
√

e radius of 0.9(1) mm.

The setup for the m-CBS experiment is sketched in

Fig. 2. The scattering medium is a cold gas of 88Sr

atoms in its ground state 1S0, and the transition 1S0 →
1P1 [at λ = 2π / k = 461 nm with a linewidth of � =
(2π )30.5 MHz] is used for the resonant scattering. The

461 probe laser beam (the m-CBS beam) has a waist of

1.5 mm and linear polarization. It first passes through a 50-50

nonpolarizing wedged beamsplitter before reaching the atoms.

A combination of two lenses with focal distances f = 15

cm and separated by a distance of 2f = 30 cm creates a

virtual image of a real mirror, placed at a distance d after

the last lens, at a distance 2f − d before the first lens. This

configuration has been used to study Talbot physics and even

allows negative distances to be realized [26,27]. The m-CBS

beam is reflected with an angle θ0 ∼ 1◦ compared to the

mirror’s normal direction. Having crossed again the atomic

cloud, the beam is partially reflected by the beamsplitter onto

a 200 mm lens. A CCD camera placed at the focal plane of the

lens allows for the detection of the angular radiation pattern.

To avoid the direction of the reflected m-CBS beam, which

would saturate its pixels, the CCD camera only captures part

of the circular pattern. An experimental measurement of such

fluorescence pattern is shown in the top right area of Fig. 2.

After turning off the MOT cooling beams, we wait 200 µ s

and shine the m-CBS beam pulse of 200 µ s duration onto the

FIG. 2. Experimental setup: A laser beam passes through a

beamsplitter (BS) before illuminating the atomic cloud a first time. It

is then reflected on a virtual mirror (VM), created by two lenses and

a physical mirror, at a small angle of θ0 ∼ 1◦ with the normal of the

mirror. After being reflected, it crosses the cloud again, before being

sent by the beamsplitter, to a CCD camera detecting the angular

distribution of the light in the focal plane of a lens. The top right

picture shows an interference pattern obtained in our experimental

setup, exhibiting the predicted circular symmetry. The inset is an

azimuthal angular average of the picture.

atomic cloud, capturing an image in the presence of atoms.

After 1 s we record a background image in the absence

of atoms. We run this sequence ≈ 200 times for the same

parameters to obtain a disorder-averaged final image as shown

in Fig. 2.

III. LINEAR REGIME

The interference phenomenon of m-CBS is best understood

in the linear regime, i.e., for a saturation parameter s =
2�2

0/ (�2 + �2/ 4) � 1, where�0 is the Rabi frequency due to

the incident laser and � is the laser detuning from the atomic

resonance. In this limit the atoms behave as classical linear

scatterers and the total fluorescence is a linear combination

of four processes depicted in Fig. 1. The reciprocity of

processes (i) and (ii) requires us to add up the corresponding

field amplitudes for each atom, whereas paths (iii) and (iv)

have no reciprocal counterpart, and so the corresponding

scattering intensities contribute, after disorder averaging, to an

incoherent background. In this low saturation limit (s � 1),

the intensity radiated by a Gaussian cloud of atoms and its

mirror image reads (see Appendix B)

I (θ) ∝ s
�
1 + 1

2
e− 2(θ0kσz)2(θ− θ0)2

cos[2θ0kh(θ − θ0)]
�
, (1)

where h is the distance between the virtual mirror and the

center of the atomic cloud and σz is the longitudinal cloud

radius at 1/
√

e. To obtain Eq. (1), a small angle approximation

has been applied (θ0 � 1 and |θ − θ0| � θ0). The second term

in the bracket on the right-hand side of Eq. (1) corresponds

to the single scattering interference of m-CBS, surviving

averaging over the atomic spatial Gaussian distribution within

a Gaussian angular envelope of half-width at 1/ e2 given

by � = 1/ θ0kσz. Since the fringes have an angular period

�f = π / θ0kh, one typically expects to detect a number
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FIG. 3. Mirror position expected from m-CBS theory (i.e., h thr =

π / kθ0�f ) as a function of the experimental mirror position. This

measurement allowed us to detect an initial experimental misalign-

ment of x0 = 2.1(1) mm, which corresponds to the shifted minimum

of the fit h thr = |Ah + x0| (dashed line); we obtained A = 0.988(12).

The error bars associated with the experimental data are smaller than

the symbol size.

∼h/ π σz of fringes on the scattered light. Together, both

terms yield an ideal contrast of m-CBS of C = 1, defined

as C = (Imax − Imin)/ Ibackground. The fringes’ period depend

on the inverse of the distance of the cloud to the mirror

(�f = π / θ0kh), so the position of the mirror can in principle

be evaluated from the fringes’ pattern. To confirm this effect,

the (virtual) mirror position h was varied for about 6 cm around

the center of the cloud, and for each position an interference

pattern similar to that of Fig. 2 was extracted. Note that we are

able to place the virtual mirror at negative distances (i.e., the

light first passes through the virtual mirror and then the atoms),

and still have the m-CBS effect. Figure 3 shows the measured

dependence of the fringes’ period �f (or, equivalently, of the

deduced mirror distance π / kθ0�f ) as a function of h. The

excellent linear behavior not only shows a good agreement

with theory, but also indicates that the initial experimental

positioning was misaligned by 2.1(1) mm.

IV. SATURATED REGIME

In the saturated regime, the atomic dipole moment has a

nonlinear response to the applied radiation field. It is then

no longer possible to add up linearly the amplitudes of four

independent processes. In order to better understand how the

contrast of m-CBS depends on the saturation parameter, we

turn to an alternative picture, valid for all saturation, including

the low and large saturation limits. In this new picture, we first

consider the total fluorescence of a single atom and its mirror

image. This fluorescence is a coherent superposition of the

light scattered by the atom and its mirror image, which have

the same amplitude and are strongly correlated. This leads,

for a single atom, to an undamped far field fringe pattern with

full contrast. Furthermore, different atoms located at different

distances from the virtual mirror are exposed to different local

amplitudes of the standing wave created by the superposition

of the incoming and reflected m-CBS beams [see Eq. (B1)

of Appendix B]. For a mirror of perfect reflectivity, and

neglecting the attenuation of the m-CBS beam after its passage

through the atomic cloud, both the incoming and reflected m-
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FIG. 4. Single-atom [colored (shaded) areas] and cloud-averaged

[red (gray) thick line] fringe patterns in the linear (a) and saturated (b)

regime. The reason for the periodic modulation of the fringes’ maxima

for different atoms is explained in the main text; the black dashed line

denotes the maximum amplitude of individual atomic fluorescence

fringes, as a function of the maxima position. The maxima of all

single-atom curves are identified by a black dot. In the saturated

regime, the saturation of the atoms reduces the amplitude modulation,

and the contrast of the averaged fringes decreases.

CBS beams have equal intensity, and the standing wave created

has perfect nodes and antinodes. The absolute amplitude of

the far field fluorescence fringes of a single atom is thus

a function of the local light intensity at its position, which

presents the nonhomogeneous distribution of the standing

wave. Atoms at the maxima of the standing wave will thus have

their far field fluorescence pattern with maximum amplitude

(see blue line in Fig. 4), compared to other atoms within the

atomic cloud (e.g., yellow or green lines in Fig. 4). Within the

previous description based on four different processes, valid

at low s, these atoms at the maxima of the standing wave are

those that have all four processes summed up constructively,

with a maximum of the scattered intensity at θ = θ0. On

the other hand, for different atomic positions in the standing

wave, while the reciprocal processes (i) and (ii) have always

constructive interference at θ = θ0, the angular position of

the maximum of the fluorescence for processes (iii) and (iv)

varies and do not always cooperate to produce a maximum

intensity at θ = θ0. Hence, adding up coherently all four

amplitudes for a single atom creates angular fringes which are

a function of the atomic position, with different amplitudes,

and maxima at different angles. An illustration of some of these

single-atom angular fluorescence patterns are shown in Fig. 4

by the colored, filled curves. The black dashed curve shows

the dependence of the amplitude of all possible single-atom

fluorescence fringes as a function of the position of the maxima

of the fringes. Considering an extended atomic sample leads to

the superposition of shifted fringes with different amplitudes.

Then, averaging over various disorder configurations leads to

a fluorescence pattern with contrasted fringes around θ = θ0

(shown by the thick red curve).

As expected, for low saturation (s � 1) this interpretation

yields the same contrast C = 1 as the interpretation based on

reciprocal paths and an incoherent background. However this

alternative interpretation of m-CBS allows us to go beyond

the linear response theory and obtain quantitative predictions
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for the saturated m-CBS regime, which is illustrated by

Figs. 4(a) and 4(b). For s = 20, the position of the maxima

of each individual atomic fringe is the same as for s � 1.

Except for atoms in an ever narrower slice around the nodes

of the standing wave produced by the incident laser, though,

the amplitude of these individual fringes all saturate now to

the same value. After averaging over all atoms, the contrast

of the total detected intensity pattern, as illustrated by the

red lines in Fig. 4(b), is reduced. Note that for the sake of

simplicity, the calculation shown in Fig. 4 is done for atoms

distributed over a small region of size of the order of a few

wavelengths, and the envelope of the fringes [as expressed by

the exponential function in Eq. (1)] is thus not visible.

In the discussion of the reduced contrast of CBS, another

important argument has been the role of the inelastically

scattered light, also known as the Mollow triplet. In the single

scattering regime considered here, one can solve the optical

Bloch equations of independent atoms, and then sum their

(independent) scattered field. For each atom, one computes the

field scattered by the oscillating dipole as being proportional

to the optical coherence. In the limit of vanishing saturation,

this allows us to compute the total scattered intensity, as all

light is elastically scattered. For larger saturation however,

the optical coherence saturates and even decreases to zero

for very large values of s. In contrast, the excited state

population saturates to a nonzero value and allows us to

compute the total scattered intensity. The difference between

the light scattering computed from the atomic coherence

or the excited state population corresponds to inelastically

scattered light (sometimes interpreted as being stimulated by

vacuum fluctuations). For atoms separated by more than one

wavelength, emission of such inelastic photons corresponds

to randomly oscillating dipoles and are thus assumed not to

preserve complete phase coherence with the incident laser,

resulting in a reduction of the CBS contrast, in addition to

the nonlinear response. In m-CBS however, the two atoms

contributing to the fringes (i.e., the atom and its mirror image)

have strongly correlated oscillations, which preserve the

relative phase, even when randomly oscillating. Thus, inelastic

scattering is expected to fully contribute to the m-CBS effect,

leading to a lower reduction of the contrast for increasing

saturation, as compared to CBS. As detailed in Appendix B

we have derived a prediction for the m-CBS contrast based on

the elastically scattered light alone [see Eq. (B11)] or based

on the light scattered using the excited state population [see

Eq. (B10)]. The resulting predictions are indicated in Fig. 5 by

“elastic scattering only” and “elastic and inelastic scattering,”

respectively. We note that, for CBS, self-interference of inelas-

tic photons has been identified to lead to a finite contrast even

in the very large saturation limit [19]. We also note that another

different, hitherto unexplained scaling for CBS with rubidium

has been reported in [12] and might be due to a modification

of the internal states of the rubidium atoms [18]. In any case,

our model including elastic and inelastic scattering predicts

m-CBS to be much more robust against saturation than CBS.

A precise measurement of the contrast and its dependence

on the saturation parameter requires a careful data treatment

in order to fully eliminate the undesired additional signal at

the camera created by the reflected m-CBS beam scattered

from all the optical elements. The procedure for extracting

saturation parameter s
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FIG. 5. Experimental m-CBS contrast (blue triangles), compared

to the normalized CBS one from a strontium cloud [11] (green

circles) and from a rubidium cloud [15] (red stars). The gray

areas for the theoretical predictions { for both the elastic scattering

only, and the elastic and inelastic scattering [see main text and

Eqs. (B11) and (B10) of Appendix B)]} account for the precision

within which our experimental parameters are known: h = 8 ±

0.5 mm and σz = 0.9 ± 0.1 mm. The data are presented as a function

of the saturation parameter s at the center of the probe beam.

the fluorescence signal out of our raw data is detailed in

Appendix A. For a given mirror position [h = 8.0(5) mm]

and cloud size [σz = 0.9(1) mm], we have repeated the

experimental sequence described before for several different

intensities of the m-CBS beam. This allowed us to obtain a

series of curves from which the absolute fringe contrast could

be extracted. Figure 5 confronts the saturation behavior of

the enhancement factor measured in our m-CBS setup and

conventional CBS measured by other groups, as a function of

the saturation parameter s at the center of the m-CBS beam.

Note that we used the same definition for the contrast of CBS as

we did for m-CBS before. The CBS data with strontium atoms

from [11] have been obtained with a probe beam on resonance,

and exhibit almost the maximum CBS contrast of 1 in the

low saturation regime. CBS was also reported with rubidium

atoms which, due to their nontrivial internal structure, exhibit

an overall lower contrast, even at low saturation parameter

[8]. We have chosen, then, to present normalized values of

the contrast for CBS rubidium data. Note that in order to

observe CBS, a high optical thickness (b > 1) is necessary to

reach a significant contrast, whereas in the m-CBS setup, the

maximum contrast is achieved at low optical densities.

V. DISCUSSION AND CONCLUSION

The comparison between CBS and m-CBS data shows a

completely different scaling for the contrast as a function

of the saturation parameter. The m-CBS contrast follows the

same scaling that we would expect from our model including

elastic and inelastic scattering, allowing us to conclude that

all photons contribute to m-CBS, whereas CBS interference

is severely reduced in the presence of inelastic scattering. The

remaining small discrepancy between theory and experiment

might be explained by at least two different effects. The
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first one is the small, but nonzero, optical thickness of our

cloud (b ∼ 0.6 at its center). At small saturation parameters,

the partial reabsorption of the fluorescence light by other

atoms from the cloud will change the relative amplitude of

the paths of Fig. 1 that have otherwise equal amplitude,

thus reducing the overall contrast. This is responsible for

the large discrepancy between experimental data and the

inelastic theoretical curve at small s. On the other hand,

at high saturation parameters the spectral broadening of the

atomic fluorescence (known as the Mollow triplet) may also

reduce the m-CBS contrast, which is not accounted for in our

model. The spectrum of inelastically scattered photons from

a resonant probe beam presents sidebands displaced by ±�0

from the atomic resonance [28]. Since the optical path for

the light scattered by the atoms is different from the optical

path for the light scattered by their mirror images by twice the

distance from the atomic cloud to the real mirror (�l ≈ 1.2 m

in our case), the inelastic broadening will cause a relative

dephasing between both when the spectral width becomes

comparable to, or bigger than, (2π )c/�l ≈ (2π )250 MHz.

For our highest experimental saturation parameter s = 20,

the separation in frequency between the Mollow sidebands is

equal to 2�0 = 2
√

s�∼ (2π )273 MHz, so the loss of optical

coherence in the interference process is already expected to

affect the m-CBS contrast. The role of the inelastic spectral

broadening in the interference of the light emitted by the atoms

and their mirror images will be studied in a future work.

In conclusion, we have observed coherent backscattering

from a cloud of cold atoms and its mirror image. Investigating

the saturated regime allowed us to identify the important

contribution of inelastic photons to the interference process,

at odds with CBS. Because this coherence effect appears

in completely different regimes as compared to CBS, such

as low optical densities and high saturation parameters, it

can represent a very important tool for probing coherences

in the atomic scattered light where CBS is not observable

anymore. In particular, by an appropriate use of waveplates

and different polarization channels, the m-CBS setup should

allow us to select specific interference paths, which is not

possible for CBS. More generally, the atom and its mirror

image are strongly correlated, which allows this situation to

probe nonclassical light effects [29–33].

ACKNOWLEDGMENTS

We appreciate helpful insights from Thibaut Jonckheere

and Dominique Delande. We thank William Guérin for his
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APPENDIX A: DATA ANALYSIS: SUBTRACTION OF THE

LASER LIGHT

As described in the main text, at each experimental run we

obtain two images: The first one is registered while the m-CBS

beam impinges on the atomic cloud, and the second one is

done in the same conditions, but with no atoms captured in our

trap. The m-CBS reflected beam, after traversing all optical

elements, creates an angular light profile on directions close

to its propagation direction. The image registered in absence

of atoms shows exclusively this light pattern. The image with

atoms has this pattern superposed to the atomic fluorescence,

that we want to extract. All the difficulty in extracting it stems

from the fact that when the atoms are also present, the m-CBS

beam is partially absorbed by them, which results in a smaller

signal on the camera when compared to its effect without

absorption. We can thus write the azimuthal-averaged profile

of the light intensity in the presence of atoms as

Ia (θ) = TI las(θ) + I f (θ), (A1)

where T = e− 2b stands for the average transmission of the

cloud after the double passage of the reflected m-CBS beam,

and I las and I f for, respectively, the intensity of the laser

light in the absence of atoms, and the intensity of the atomic

fluorescence only. From I f (θ), the absolute contrast can thus

be extracted. Out of the fringes’ envelope (or, to a good ap-

proximation, for |θ − θ0| > 2�), and since we are monitoring

the intensity in a narrow angle of 10 mrad, the fluorescence

background is isotropic to an excellent approximation. We can

write then

Ia (θ,|θ − θ0| > 2�) = TI las(θ) + Ifluo, (A2)

where Ifluo is the constant incoherent atomic background.

Then the laser light profile is determined by finding the linear

combination of Ia (θ) (measured with the atoms) and I las(θ)

(measured without the atoms) that satisfies Eq. (A2) outside of

the fringes region. An example is provided in Fig. 6(a), where

the measured intensity profile with and without the atoms

is presented, as well as the extracted atomic fluorescence.

Figures 6(b) and 6(c) show the fitted parameters T and Ifluo,

respectively, as a function of the saturation parameter s at the
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FIG. 6. (a) Angular intensity profile in the presence (middle black

curve) and in the absence [top green (gray) curve] of the atomic

cloud. The deduced atomic fluorescence after the laser light weighted

subtraction (see text) I f (θ) [lower red (gray) curve, right vertical axis]

presents a locally isotropic background, plus an interference pattern

at the center. (b) Transmission coefficient T and (c) background

intensity Ifluo deduced from the fit [see Eq. (A2) and the main text], as

a function of the on-axis saturation parameter s. The dashed curves

are calculated with a simple model for the interaction between our

saturated Gaussian laser beam and our Gaussian atomic cloud.
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center of the atomic beam (black circles). The dashed lines

correspond to a simple model for the interaction between our

saturated Gaussian laser beam and our Gaussian shaped atomic

cloud, with the optical density at the center as the only free

parameter. The good agreement gives us confidence in the

fitting procedure for extracting the pure atomic fluorescence

out of our raw data.

APPENDIX B: SINGLE-SCATTERING THEORY

In the following we outline the theoretical approach used to

obtain the radiated intensity pattern in the linear and saturated

regimes. Since we are focusing on the single scattering regime,

it is sufficient to study the behavior of single atoms, and then

sum their radiation independently. Let us thus consider a two-

level atom at position r = (x,y,z) driven by a field of wave

vector k0 = k(0, sin θ0, − cos θ0).

Without loss of generality, we assume that the (virtual)

dielectric mirror lies in the plane z = 0 and choose the initial

polarization along the x̂ axis. The incident field plus its mirror

generate a standing wave in the z axis and a propagating one

in the y direction:

�(r ) = �0 cos(kz cos θ0)e− iky sin θ0 . (B1)

Note that we have here assumed high quality mirrors that

possess unity reflection coefficients.

The single-atom equations are then used to determine the

radiation of each atom. Calling σ, σ †, and σ z the atomic

operators, in the semiclassical limit the atomic dynamics is

described by the following set of equations [34]:

dσ̂

dt
=

�

i� −
�

2

�

σ̂ + i�(r )σ̂ z, (B2)

dσ̂ z

dt
= 2i[�∗(r )σ̂ − �(r )σ̂ †] − �(σ̂ z + 1), (B3)

with the commutation relations [σ̂ , σ̂ z] = 2σ̂ ,[σ̂ †,σ̂ ] = σ̂ z,

and σ̂ zσ̂ = − σ̂ .

By imposing the time derivatives to be zero, one obtains the

steady state (ss) expectation values of the optical coherence

and excited population for an atom at position r :

�̂σ�ss(r ) =
�2 + �2/ 4

� + i�/ 2

�(r )

�2 + �2/ 4 + 2|�(r )|2
, (B4)

�̂σ †σ̂�ss (r ) =
|�(r )|2

�2 + �2/ 4 + 2|�(r )|2
. (B5)

In the far field limit, the field radiated by a single atom in a

direction k = kn̂ and at a distance r reads [35]

Ê(k,t) = − σ̂ (t)
dk2

4π �0r
[n̂(x̂ · n̂) − x̂]e− ik·r , (B6)

where d refers to the dipole coupling element and �0 to the

vacuum permittivity.

The measured field in the m-CBS experiment actually

contains two contributions from each atom, since the radiation

of the latter may be reflected or not by the mirror [see Fig. 1,

with processes (i) and (iv) that yield mirror reflection after

scattering]. Thus the total scattered electric field Es in a

direction k comes from the superposition

Es(k) = E(kx ,ky ,kz) + E(kx ,ky , − kz). (B7)

In general, the different components of the field may play an

important role in the intensity profile. However, our experiment

was carried out within observation angles θ � 1, where only

the E x component is significant. Hence we obtain for the

steady-state fields the following expression:

�E s�∼
√
α�σ�ss cos(kz cos θ)e− iky y− ikxx , (B8)

�E †
s E s�∼ α�σ

†σ�ss cos2(kz cos θ), (B9)

where the prefactor α = d2k4/ (4π 2�2
0 r 2) is unimportant to the

determination of the contrast. Equation (B8) corresponds to the

optical coherence, and thus to the elastically scattered light.

On the contrary Eq. (B9) describes the total intensity, that is,

both elastic and inelastic photons [34].

Moving to the m-CBS by a macroscopic cloud of N atoms

with positions r j , the radiation pattern is computed as the sum

of the single-atom intensities:

I tot

I0

=
4s

N

N�

j = 1

cos2(kzj cos θ0) cos2(kzj cos θ)

1 + s cos2(kzj cos θ0)
, (B10)

where we have introduced the saturation parameter s =
2�2

0/ (�2 + �2/ 4) and I0 = c�0Nα/ 8. Equation (B10) relies

on the simplifying hypothesis that all the scattered light (elastic

and inelastic) has the same phase after the scattering, at any

time. More precisely, the coherence length of the light is much

larger than the distance between the (real) mirror and the cloud,

so the inelasticity of the photons may not play a role. We note

that, in the case of a uniform intensity distribution of the laser

beam, the spatial distribution of the atoms in the plane of the

mirror (x,y) does not play any role in this setup.

Nevertheless, if one was to assume that only elastically

scattered light contributes to the fringes pattern, the following

expression for the intensity would be obtained:

Iela

I0

=
4s

N

N�

j = 1

cos2(kzj cos θ0) cos2(kzj cos θ)

[1 + s cos2(kzj cos θ0)]2
. (B11)

Let us first focus on the linear regime, which is that of elastic

scattering (I tot ≈ Iela), and that is obtained by taking s � 1. We

obtain the following expression for the microscopic system:

Iela(θ)

I0

≈
s

N

N�

j = 1

{cos[kzj (cos θ − cos θ0)]

+ cos[kzj (cos θ + cos θ0)]}2. (B12)

At this point it must be noted that a single atom will exhibit

full contrast, with fringes that are not damped. However, in

the many-body case, the superposition of atoms with different

fringes phase (see Fig. 4) results in an interference pattern

with a reduced contrast, over a finite envelope. This sum over

a macroscopic cloud (i.e., much larger than the wavelength)

is well captured by substituting the sum over the atoms

by an integral over the typical atomic distribution
� N

j = 1 →�
drρ (r ). The first term in the sum in Eq. (B12) provides a

coherent contribution in the θ = θ0 direction, whatever the
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position z of the atom, whereas the second term averages to 0.

The decay of the envelope is then provided by the finite size of

the cloud. For a Gaussian distribution such as those produced

in our trap, one obtains Eq. (1). That equation predicts an

alternation of constructive and destructive interferences with

period π / (khθ0), which leads to the observed fringes, see

Fig. 7.

Remark that the elastic contribution Eq. (B11) decreases

as 1/ s for increasing saturation parameter s, whereas the total

radiation converges to

lim
s→∞

I tot(θ)

I0

=
4

N

N�

j = 1

cos2(kzj cos θ). (B13)

Integrating over a Gaussian distribution as before, in the

small angle and large cloud limits, we obtain I tot = 2I0, i.e.,

the fluorescence converges to a finite value for very large

saturation parameters. Thus the ratio between the elastically

scattered intensity to the total one scales as 1/ s, which explains

the fast decay of the contrast of the “elastic” theory.

In the saturated regime, atoms that are not close to a zero

of the standing wave saturate. As s increases, the proportion

of scatterers that contribute to the grating decreases as 1/
√

s,

θx (mrad)
-0.02 -0.01 0 0.01 0.02
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y (

m
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d
)
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0
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10 15 20 25
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〈I
〉
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1.5
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FIG. 7. (a) Intensity pattern in the nonlinear regime [Eq. (B10)],

with s = 20. The intensity pattern in the linear regime is virtually

identical, up to a scaling factor. (b) Azimuthal average of the intensity

pattern normalized to the background intensity, in the linear (s =

0.01, blue continuous line) and nonlinear (s = 20, red dashed line)

regimes, showing the fringes profile. The figures can be compared to

the measurement presented in Fig. 2 of the main text.

whereas the others produce an isotropic fluorescence radiation

pattern. This explains the rather slow decay of the contrast in

the “inelastic theory.” In the present work, the intensity pattern

for large values of s was computed numerically using the

microscopic formula (B10), for random Gaussian distributions

of one hundred thousands of atoms (see Fig. 5).
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